sexta-feira, 5 de fevereiro de 2010

Biologia Molecular do Gene

O DNA transporta a informação genética de maneira codificada de célula a célula e dos pais para a progênie. Toda a informação necessária para a formação de um novo organismo está contida na sequência linear das quatro bases, e a replicação fiel desta informação é assegurada pela estrutura de dupla cadeia do DNA onde o A pareia-se somente com o T e o G com o C.
O DNA não está livre dentro da célula, mas forma complexos com proteínas na estrutura denominada cromatina. No momento da divisão celular, a cromatina condensa-se na forma de cromossomos.

Os cromossomos são filamentos encontrados no interior do núcleo das células. Eles ocorrem normalmente em pares, têm diferentes tamanhos e formas e seu número é constante em cada espécie de ser vivo. As células humanas têm 46, divididos em 23 pares, com exceção das reprodutivas, que têm apenas 23 cromossomos. Os membros de um par recebem o nome de cromossomos homólogos. O gene é uma unidade hereditária que consiste numa sequência particular de bases no DNA e que especifica a produção de uma certa proteína (por exemplo, uma enzima). Existem três tipo de genes. Aqueles que são apenas transcritos, os que são transcritos e traduzidos e os que não são transcritos e consequentemente não são traduzidos.

Os genes estão presentes em pares denominados alelos, sendo que cada alelo está
localizado em um dos cromossomos homólogos. Eles estão situados num locus específico que ocupa a mesma posição em cada cromossomo. Quando um gene se expressa, sua informação é primeiramente copiada no ácido ribonucléico (RNA), que por sua vez dirige a síntese dos produtos elementares do gene, as proteínas específicas. O termo transcrição é empregado como sinônimo de síntese do RNA, e tradução como sinônimo de síntese protéica.

Três Nucleotídeos codificam um Aminoácido

Os códons, ou unidades hereditárias que contém o código de informação para um aminoácido, são compostos por três nucleotídeos (um trio). Esta informação encontra-se no DNA, de onde é transcrita para o RNA mensageiro; assim, o mRNA possui a sequência de bases complementar à do DNA do qual foi copiado. O DNA e o mRNA possuem somente quatro bases diferentes, enquanto que as proteínas contêm 20 diferentes aminoácidos. Dessa maneira, o código é lido em grupos de três bases, sendo três o número mínimo necessário para a codificação de 20 aminoácidos. [As permutações possíveis das quatro bases são 43 = 64. Se o código genético fosse constituído por duplas, o número de códons seria insuficiente (42 = 16) e se fossem utilizados grupos de quatro bases as possibilidades ultrapassariam em muito o necessário (44 = 256).]

O comprimento da porção codificadora de um gene depende da extensão da mensagem a ser traduzida, isto é, o número de aminoácidos da proteína. Por exemplo, uma sequência de 1.500 nucleotídeos pode conter 500 códons que codificam para uma proteína que contém 500 aminoácidos. A mensagem é lida a partir de um ponto inicial fixo sinalizado por códons de iniciação especiais. A sequência de trios determina a sequência dos aminoácidos de uma proteína. Os aminoácidos, no entanto, não são capazes de reconhecer por si sós um dado trio do mRNA; para que isso aconteça, cada aminoácido precisa ligar-se a uma molécula adaptadora denominada RNA de transferência (tRNA). Cada molécula de tRNA possui um sítio de ligação do aminoácido e um outro local para o reconhecimento dos trios do mRNA. Este último sítio é denominado de anti-códon e consiste em três nucleotídeos que podem estabelecer um pareamento de bases com o códon complementar do mRNA. A tradução da mensagem numa proteína ocorre nos ribossomos, que asseguram a interação ordenada de todos os componentes envolvidos na síntese protéica.

Por volta de 1964 todos os 64 códons possíveis haviam sido decifrados. 61 códons correspondem a aminoácidos e 3 representam sinais para a terminação das cadeias polipeptídicas. Sabendo que existem somente 20 aminoácidos, fica evidente que vários trios podem codificar para o mesmo aminoácido; isto é, alguns dos trios são sinônimos. A prolina, por exemplo, é codificada por CCU, CCA, CCG e CCC. Note que na maioria dos casos os códons que são sinônimos diferem somente na base que ocupa a terceira posição no trio e que as duas primeiras bases são mais inflexíveis na codificação. Em consequência, as mutações que atingem a terceira base frequentemente passam
desapercebidas (mutações silenciosas) pois elas podem não alterar a composição de aminoácidos da proteína. O sinal de iniciação para a síntese protéica é o códon AUG. O sinal de terminação é fornecido pelos códons UAG, UAA, UGA. Quando o ribossomo atinge o códon de terminação, a cadeia polipeptídica completa é liberada.

Sequências Intercaladas nos Genes Eucarióticos

Inesperadamente, observou-se que nos eucariontes a informação para mRNAs covalentemente contíguos está frequentemente localizada em segmentos de DNA não contíguos. Em outras palavras, os genes são interrompidos por inserções de DNA não codificador. Estas sequências de DNA inseridas, que não são encontradas no mRNA maduro, são denominadas sequências intercaladas ou íntrons. Foram encontrados íntrons em genes da globina, albumina de ovo, imunoglobina, tRNA e muitos outros genes. Nem todos os genes eucarióticos são interrompidos; aqueles que codificam para as histonas e alguns tRNAs, por exemplo, são contínuos. As partes da sequência de DNA que produzem proteína são chamadas de éxons. Mutação Outro conceito importante da biologia é o de mutação, que é uma mudança no conteúdo do DNA. Os tipos de mudanças podem ser de substituição de base, inserção de base, remoção de base, e rearranjo ou troca na ordem de segmentos de base. Estas mudanças podem ser divididas em classes dependendo da escala com que elas ocorrem. Algumas mudanças são fenômenos localizados, enquanto outras ocorrem um milhão de vezes seguidas.

Genoma

O genoma é o conteúdo de todo DNA presente em uma célula, incluindo todos os genes e todas as regiões intergênicas.

Composição Básica do DNA

Composição Básica do DNA: A = T e G = C

O DNA está presente nos organismos vivos na forma de moléculas lineares de peso molecular extremamente elevado. A E.coli, por exemplo, possui uma molécula única circular de DNA que pesa em torno de 2,7 X 109 dáltons (dálton é uma unidade de massa equivalente a 1/16 da massa de um átomo de oxigênio, ou aproximadamente igual à de um átomo de hidrogênio) e tem um comprimento total de 1,4mm. Em organismos superiores a quantidade de DNA pode ser vários milhares de vezes maior; por exemplo, o DNA de uma única célula diplóide humana, se totalmente esticado, teria um comprimento total de 1,7m.
Toda a informação genética de um organismo vivo está armazenada em sua sequência linear das quatro bases. Portanto, um alfabeto de quatro letras (A, T, C, G) deve codificar a estrutura primária (i.é., o número e a sequência dos 20 aminoácidos) de todas as proteínas. Uma das mais extraordinárias descobertas da biologia molecular foi a elucidação deste código. Um prólogo desta descoberta, que tem ligação direta com o entendimento da estrutura do DNA, foi o achado de que existiam regularidades previsíveis no conteúdo das bases. Entre 1949 e 1953, Chargaff estudou detalhadamente a composição do DNA. Ele observou que, apesar da composição de bases variar de uma espécie para outra, a quantidade de adenina era igual à de timina (A = T) em todos os
casos. Foi também notado que o número de bases de guanina e citosina era igual (G = C). Consequentemente, a quantidade total de purinas equivale à de piridiminas(i.é, A + G = C + T). Por outro lado, a razão AT/GC varia consideravelmente entre as espécies.

O DNA é uma Hélice Dupla
Após a descoberta da estrutura do DNA ficou explicado a regularidade de sua composição de bases e suas propriedades biológicas, particularmente sua duplicação na célula.
Ele é composto por duas cadeias helicoidais de polinucleotídeos com giro para a direita, formando uma hélice dupla em torno de um mesmo eixo central. As duas fitas são antiparalelas, unidas por pontes de hidrogênio estabelecidas entre os pares de bases. Desde que existam uma distância fixa entre as duas moléculas de açúcar nas fitas opostas, somente certos pares de bases podem se encaixar na estrutura. Os únicos pares possíveis são o AT e o CG.

A sequência axial de bases ao longo de uma cadeia de polinucleotídeo pode variar consideravelmente, porém na outra cadeia a sequência deve ser complementar. Devido a esta propriedade, dada uma ordem de bases em uma cadeia, a outra é exatamente complementar. Durante a duplicação do DNA, as duas cadeias dissociam-se e cada uma age como um molde para a síntese da nova cadeia complementar. Assim sendo, são produzidas duas moléculas de DNA de cadeia dupla, possuindo exatamente a mesma constituição molecular.

Cada fita do DNA tem duas extremidades, chamadas de 3' e 5', numa alusão aos átomos de carbono que ficam livres no açúcar que compõem cada nucleotídeo. Há duas observações importantes neste contexto. A primeira é que a extremidade 3' de uma fita corresponde à extremidade 5' da outra. A segunda é que um A em uma fita corresponde a um T na fita oposta, e um C sempre corresponde a um G. É dito que A e T são bases complementares, assim como, C e G. Com isto, a sequência de nucleotídeos numa das fitas determina completamente a molécula de DNA. É justamente esta propriedade que permite a auto-duplicação do DNA. A convenção adotada mundialmente para representar moléculas de DNA é escrever apenas umas das fitas na direção 5' ? 3'.

Estrutura do RNA: classes e conformação

A estrutura primária do RNA é semelhante à do DNA, exceto pela substituição da ribose pela desoxirribose e da uracila pela timina. A composição de bases do RNA não segue as normas de Chargaff, pois as moléculas de RNA são compostas por uma única cadeia. Existem três principais classes de ácido ribonucléico: o RNA mensageiro (mRNA), o RNA de transferência (tRNA) e o ribossômico (rRNA). Todos estão envolvidos na síntese protéica. O mRNA contém a informação genética para a sequência de aminoácidos, o tRNA identifica e transporta as moléculas de aminoácidos até o ribossomo, e o rRNA representa 50% da massa dos ribossomos, organelas que fornecem um suporte molecular para as reações químicas da montagem de um polipeptídeo.

Proteínas Homólogas
Proteínas homólogas são aquelas que possuem relação filogenética comprovada. A evolução molecular segue alguns dos mesmos princípios da evolução dos seres vivos; golfinhos e tubarões tem mais ou menos o mesmo formato, entretanto são animais completamente diferentes (peixes X mamíferos). Da mesma forma, duas proteínas podem exercer a mesma função, e até terem uma certa semelhança, mas não terem relação nenhuma do ponto de vista de sua origem. Resumindo, duas proteínas homólogas são proteínas cuja relação de origem foi comprovada.



Introdução à Biologia Celular e Molecular
www.inf.puc-rio.br/~melissa/.../biologia/anexo_biologia.pdf

segunda-feira, 28 de setembro de 2009

Meiose


A meiose (sigla = R!) é um processo de divisão celular pelo qual uma célula diplóide (2N) origina quatro células haplóides (N), reduzindo à metade o número de cromossomos constante de uma espécie. Sendo subdividido em duas etapas: a primeira divisão meiótica (meiose I) e a segunda divisão meiótica (meiose II). Na primeira etapa, também denominada reducional, ocorre a diminuição no número de cromossomos. Na segunda, equacional, o número de cromossomos das células que se dividem é mantido igual aos das células que se formam.


Dependendo do grupo de organismos, a meiose pode ocorrer em diferentes momentos do ciclo de vida: na formação de gametas (meiose gamética), na produção de esporos (meiose espórica) e logo após a formação do zigoto (meiose zigótica). As duas etapas possuem fases que se caracterizam por eventos biológicos marcantes, sendo relacionadas e descritas abaixo:

Meiose I Prófase I → é uma fase muito extensa, constituída por 5 subfases: Leptóteno – inicia-se a individualização dos cromossomos estabelecendo a condensação (espiralização), com maior compactação dos cromonemas; Zigóteno – aproximação dos cromossomos homólogos, sendo esse denominado de sinapse; Paquíteno – máximo grau de condensação dos cromossomos, os braços curtos e longos ficam mais evidentes e definidos, dois desses braços, em respectivos homólogos, se ligam formando estruturas denominadas bivalentes ou tétrades. Momento em que ocorre o crosing-over, isto é, troca de segmentos (permutação de genes) entre cromossomos homólogos; Diplóteno – começo da separação dos homólogos, configurado de regiões quiasmas (ponto de intercessão existente entre os braços entrecruzados, portadores de características similares); Diacinese – finalização da prófase I, com separação definitiva dos homólogos, já com segmentos trocados. A carioteca (envoltório membranoso nuclear) desaparece temporariamente. Metáfase I → os cromossomos ficam agrupados na região equatorial da célula, associados às fibras do fuso; Anáfase I → encurtamento das fibras do fuso, deslocando os cromossomos homólogos para os pólos da célula. Nessa fase não há separação do centrômero (ponto de ligação das cromátides irmãs em um cromossomo). Telófase I → desespiralização dos cromossomos, retornando ao aspecto filamentoso, havendo também o reaparecimento do nucléolo bem como da carioteca e divisão do citoplasma (citocinese), originando duas células haplóides. Meiose II Prófase II → os cromossomos voltam a se condensar, o nucléolo e a carioteca desaparecem novamente. Os centríolos se duplicam e se dirigem para os pólos, formando o fuso acromático. Metáfase II → os cromossomos se organizam no plano equatorial, com suas cromátides ainda unidas pelo centrômero, ligando-se às fibras do fuso. Anáfase II → separação das cromátides irmãs, puxadas pelas fibras em direção a pólos opostos. Telófase II → aparecimento da carioteca, reorganização do nucléolo e divisão do citoplasma completando a divisão meiótica, totalizando 4 células filhas haplóides.

Fonte: Brasil Escola



Difusão da Célula


A membrana celular exerce um papel importante no que se diz respeito à seletividade de substâncias - característica esta chamada permeabilidade seletiva. Neste processo, elas podem ser:- impedidas de atravessar o espaço intra ou intercelular;- transportadas, mas com gasto de energia (transporte ativo);- transportadas, sem gasto de energia (transporte passivo).No transporte passivo, temos a difusão simples, difusão facilitada e osmose. Neste texto abordaremos apenas estas duas primeiras, que ocorrem a fim de igualar a concentração intra e extracelular.Difusão simples Consiste no transporte de substâncias permeáveis à membrana. Estas, em solução, podem fluir de dentro para fora da célula ou vice-versa, de forma espontânea. Este processo ocorre de uma região com maior concentração de partículas para uma com concentrações menores. Trocas gasosas entre o sangue e tecidos é um exemplo deste tipo de transporte.Difusão facilitadaHá o auxílio de proteínas de membrana, denominadas permeases. Estas possuem sítios de ligação específicos para os tipos de substrato e atuam a fim de permitir que substâncias transitem pela região de bicamada lipídica. O processo auxilia em casos em que essas últimas, em razão das suas propriedades químicas e tamanhos moleculares, demorariam muito tempo ou não poderiam fluir de forma espontânea, via difusão simples. Neste caso, a movimentação se dá nas regiões mais para as menos concentradas e a velocidade é controlada, principalmente, pela quantidade de permeases disponíveis.Sais minerais e determinados aminoácidos são transportados desta forma.


Fonte: Brasil Escola


Mitocôndrias


As mitocôndrias são organelas citoplasmáticas com formas variáveis: ovóides, esféricas ou de bastonetes, medindo aproximadamente de 02μm a 1μm de diâmetro e 2μm a 10μm de comprimento. São constituídas por duas membranas: a mais externa lisa e a interna pregueada, formando as cristas mitocondriais (septos), que delimitam a matriz mitocondrial (solução viscosa semelhante ao citosol), onde ficam dispersas estruturas ribossomais, enzimas e um filamento de DNA circular. As enzimas catalisam a importante função dessas organelas, no que diz respeito à respiração celular, fornecendo energia metabólica liberada na forma de ATP (Adenosina Trifosfato), despendida em todas as atividades desenvolvidas por uma célula. Portanto, durante o processo de respiração aeróbia ocorrem reações determinantes nas mitocôndrias: o Ciclo de Krebs na matriz mitocôndrial e a Cadeia Respiratória nas cristas mitocondriais. O fato de esta organela possuir material genético próprio permite a ela capacidade de se autoduplicar, principalmente em tecidos orgânicos que requerem uma compensação fisiológica maior quanto à demanda energética, percebido pela concentração de mitocôndrias em células de órgãos como o fígado (células hepáticas) e a musculatura (fibra muscular). Existem teorias (endossimbiótica) a cerca da origem das mitocôndrias, que demonstram o surgimento dessas organelas nas células eucariontes durante a evolução a partir de análise comparativa e evidências como: - a dupla membrana, sendo a interna semelhante aos mesossomos (dobras membranosas de bactérias, ricas em enzimas respiratórias); - o pequeno tamanho dos ribossomos, semelhantes aos de procariotos, e diferenciados aos encontrados no hialoplasma da mesma célula eucarionte; - e a presença de DNA circular. Portanto, supõe-se que por volta de 2,5 bilhões de anos, células procarióticas teriam fagocitado, sem digestão, arqueobactérias capazes de realizar respiração aeróbia, disponibilizando energia para a célula hospedeira, garantindo alimento e proteção (uma relação harmônica de dependência).


Fonte: Brasil Escola

Mitose







Mitose é o processo de divisão celular pelo qual uma célula eucarionte origina, em seqüência ordenada de etapas, duas células-filhas cromossomicamente e geneticamente idênticas. A grosso modo costuma-se dividir este processo em dois momentos: o primeiro relacionado à formação de dois núcleos filhos e o segundo correspondendo à citocinese (divisão do citoplasma). Contudo, didaticamente detalhada em quatro etapas: prófase, metáfase, anáfase e telófase. Prófase → é a etapa preparatória da célula para início da divisão, ocorrendo eventos correlacionados ao período de interfase, essenciais para o ciclo celular: - Princípio da condensação (espiralização / compactação) dos cromossomos duplicados na interfase; - Desaparecimento do nucléolo em conseqüência da paralisação do mecanismo de síntese. - Duplicação do centríolo e migração desses para os pólos opostos da célula, formando microtúbulos, as fibras do fuso e do haster, ambas constituídas de tubulinas alfa e beta. As do fuso unir-se-ão ao cinetócoro, região do centrômero (ponto de intersecção entre os braços cromossômicos), e as do haster dando suporte (fixação) juntamente à face interna da membrana plasmática.



Metáfase → Fase de máxima condensação dos cromossomos e desfragmentação total da carioteca (membrana nuclear), havendo: - Deslocamento e disposição linear dos cromossomos na placa equatorial (metafásica) da célula. - ligação dos centrômeros às fibras do fuso.


Anáfase → Fase da divisão onde ocorre a separação dos cromossomos duplicados, migrando cada cromátide irmã em direção aos pólos opostos, devido ao encurtamento dos microtúbulos, conseqüente à retirada de tubulinas.


Telófase → Última etapa da divisão mitótica, caracterizada pelo agrupamento e descompactação dos cromossomos (genoma) em extremidades opostas, recomposição da carioteca e nucléolo, finalizando o processo com a citocinese (individualização do citoplasma em duas células-filhas).



Plastos



Os plastos, também denominados de plastídeos, estruturas normalmente discóides, são orgânulos citoplasmáticos presentes exclusivamente em células de plantas e de algas, originados do processo de diferenciação dos proplastos (os protoplastídeos) de acordo com a função celular de cada um. Podem ser incolores (leucoplastos), ou coloridos, com pigmentos em seu interior (cromoplastos). Um exemplo comum de cromoplastos são os cloroplastos contendo o pigmento fotossintetizante clorofila. Além dos tipos referidos, os demais proplastídeos se diferenciam em: amiloplastos, que armazenam amido; Elaioplastos, que acumulam gordura; e Leucoplastos, desempenhando síntese de monoterpeno (hidrocarbonetos / óleos essenciais).
Por Krukemberghe Fonseca


Fonte: Brasil Escola