O DNA transporta a informação genética de maneira codificada de célula a célula e dos pais para a progênie. Toda a informação necessária para a formação de um novo organismo está contida na sequência linear das quatro bases, e a replicação fiel desta informação é assegurada pela estrutura de dupla cadeia do DNA onde o A pareia-se somente com o T e o G com o C.
O DNA não está livre dentro da célula, mas forma complexos com proteínas na estrutura denominada cromatina. No momento da divisão celular, a cromatina condensa-se na forma de cromossomos.
Os cromossomos são filamentos encontrados no interior do núcleo das células. Eles ocorrem normalmente em pares, têm diferentes tamanhos e formas e seu número é constante em cada espécie de ser vivo. As células humanas têm 46, divididos em 23 pares, com exceção das reprodutivas, que têm apenas 23 cromossomos. Os membros de um par recebem o nome de cromossomos homólogos. O gene é uma unidade hereditária que consiste numa sequência particular de bases no DNA e que especifica a produção de uma certa proteína (por exemplo, uma enzima). Existem três tipo de genes. Aqueles que são apenas transcritos, os que são transcritos e traduzidos e os que não são transcritos e consequentemente não são traduzidos.
Os genes estão presentes em pares denominados alelos, sendo que cada alelo está localizado em um dos cromossomos homólogos. Eles estão situados num locus específico que ocupa a mesma posição em cada cromossomo. Quando um gene se expressa, sua informação é primeiramente copiada no ácido ribonucléico (RNA), que por sua vez dirige a síntese dos produtos elementares do gene, as proteínas específicas. O termo transcrição é empregado como sinônimo de síntese do RNA, e tradução como sinônimo de síntese protéica.
Três Nucleotídeos codificam um Aminoácido
Os códons, ou unidades hereditárias que contém o código de informação para um aminoácido, são compostos por três nucleotídeos (um trio). Esta informação encontra-se no DNA, de onde é transcrita para o RNA mensageiro; assim, o mRNA possui a sequência de bases complementar à do DNA do qual foi copiado. O DNA e o mRNA possuem somente quatro bases diferentes, enquanto que as proteínas contêm 20 diferentes aminoácidos. Dessa maneira, o código é lido em grupos de três bases, sendo três o número mínimo necessário para a codificação de 20 aminoácidos. [As permutações possíveis das quatro bases são 43 = 64. Se o código genético fosse constituído por duplas, o número de códons seria insuficiente (42 = 16) e se fossem utilizados grupos de quatro bases as possibilidades ultrapassariam em muito o necessário (44 = 256).]
O comprimento da porção codificadora de um gene depende da extensão da mensagem a ser traduzida, isto é, o número de aminoácidos da proteína. Por exemplo, uma sequência de 1.500 nucleotídeos pode conter 500 códons que codificam para uma proteína que contém 500 aminoácidos. A mensagem é lida a partir de um ponto inicial fixo sinalizado por códons de iniciação especiais. A sequência de trios determina a sequência dos aminoácidos de uma proteína. Os aminoácidos, no entanto, não são capazes de reconhecer por si sós um dado trio do mRNA; para que isso aconteça, cada aminoácido precisa ligar-se a uma molécula adaptadora denominada RNA de transferência (tRNA). Cada molécula de tRNA possui um sítio de ligação do aminoácido e um outro local para o reconhecimento dos trios do mRNA. Este último sítio é denominado de anti-códon e consiste em três nucleotídeos que podem estabelecer um pareamento de bases com o códon complementar do mRNA. A tradução da mensagem numa proteína ocorre nos ribossomos, que asseguram a interação ordenada de todos os componentes envolvidos na síntese protéica.
Por volta de 1964 todos os 64 códons possíveis haviam sido decifrados. 61 códons correspondem a aminoácidos e 3 representam sinais para a terminação das cadeias polipeptídicas. Sabendo que existem somente 20 aminoácidos, fica evidente que vários trios podem codificar para o mesmo aminoácido; isto é, alguns dos trios são sinônimos. A prolina, por exemplo, é codificada por CCU, CCA, CCG e CCC. Note que na maioria dos casos os códons que são sinônimos diferem somente na base que ocupa a terceira posição no trio e que as duas primeiras bases são mais inflexíveis na codificação. Em consequência, as mutações que atingem a terceira base frequentemente passam
desapercebidas (mutações silenciosas) pois elas podem não alterar a composição de aminoácidos da proteína. O sinal de iniciação para a síntese protéica é o códon AUG. O sinal de terminação é fornecido pelos códons UAG, UAA, UGA. Quando o ribossomo atinge o códon de terminação, a cadeia polipeptídica completa é liberada.
Sequências Intercaladas nos Genes Eucarióticos
Inesperadamente, observou-se que nos eucariontes a informação para mRNAs covalentemente contíguos está frequentemente localizada em segmentos de DNA não contíguos. Em outras palavras, os genes são interrompidos por inserções de DNA não codificador. Estas sequências de DNA inseridas, que não são encontradas no mRNA maduro, são denominadas sequências intercaladas ou íntrons. Foram encontrados íntrons em genes da globina, albumina de ovo, imunoglobina, tRNA e muitos outros genes. Nem todos os genes eucarióticos são interrompidos; aqueles que codificam para as histonas e alguns tRNAs, por exemplo, são contínuos. As partes da sequência de DNA que produzem proteína são chamadas de éxons. Mutação Outro conceito importante da biologia é o de mutação, que é uma mudança no conteúdo do DNA. Os tipos de mudanças podem ser de substituição de base, inserção de base, remoção de base, e rearranjo ou troca na ordem de segmentos de base. Estas mudanças podem ser divididas em classes dependendo da escala com que elas ocorrem. Algumas mudanças são fenômenos localizados, enquanto outras ocorrem um milhão de vezes seguidas.
Genoma
O genoma é o conteúdo de todo DNA presente em uma célula, incluindo todos os genes e todas as regiões intergênicas.
O DNA não está livre dentro da célula, mas forma complexos com proteínas na estrutura denominada cromatina. No momento da divisão celular, a cromatina condensa-se na forma de cromossomos.
Os cromossomos são filamentos encontrados no interior do núcleo das células. Eles ocorrem normalmente em pares, têm diferentes tamanhos e formas e seu número é constante em cada espécie de ser vivo. As células humanas têm 46, divididos em 23 pares, com exceção das reprodutivas, que têm apenas 23 cromossomos. Os membros de um par recebem o nome de cromossomos homólogos. O gene é uma unidade hereditária que consiste numa sequência particular de bases no DNA e que especifica a produção de uma certa proteína (por exemplo, uma enzima). Existem três tipo de genes. Aqueles que são apenas transcritos, os que são transcritos e traduzidos e os que não são transcritos e consequentemente não são traduzidos.
Os genes estão presentes em pares denominados alelos, sendo que cada alelo está localizado em um dos cromossomos homólogos. Eles estão situados num locus específico que ocupa a mesma posição em cada cromossomo. Quando um gene se expressa, sua informação é primeiramente copiada no ácido ribonucléico (RNA), que por sua vez dirige a síntese dos produtos elementares do gene, as proteínas específicas. O termo transcrição é empregado como sinônimo de síntese do RNA, e tradução como sinônimo de síntese protéica.
Três Nucleotídeos codificam um Aminoácido
Os códons, ou unidades hereditárias que contém o código de informação para um aminoácido, são compostos por três nucleotídeos (um trio). Esta informação encontra-se no DNA, de onde é transcrita para o RNA mensageiro; assim, o mRNA possui a sequência de bases complementar à do DNA do qual foi copiado. O DNA e o mRNA possuem somente quatro bases diferentes, enquanto que as proteínas contêm 20 diferentes aminoácidos. Dessa maneira, o código é lido em grupos de três bases, sendo três o número mínimo necessário para a codificação de 20 aminoácidos. [As permutações possíveis das quatro bases são 43 = 64. Se o código genético fosse constituído por duplas, o número de códons seria insuficiente (42 = 16) e se fossem utilizados grupos de quatro bases as possibilidades ultrapassariam em muito o necessário (44 = 256).]
O comprimento da porção codificadora de um gene depende da extensão da mensagem a ser traduzida, isto é, o número de aminoácidos da proteína. Por exemplo, uma sequência de 1.500 nucleotídeos pode conter 500 códons que codificam para uma proteína que contém 500 aminoácidos. A mensagem é lida a partir de um ponto inicial fixo sinalizado por códons de iniciação especiais. A sequência de trios determina a sequência dos aminoácidos de uma proteína. Os aminoácidos, no entanto, não são capazes de reconhecer por si sós um dado trio do mRNA; para que isso aconteça, cada aminoácido precisa ligar-se a uma molécula adaptadora denominada RNA de transferência (tRNA). Cada molécula de tRNA possui um sítio de ligação do aminoácido e um outro local para o reconhecimento dos trios do mRNA. Este último sítio é denominado de anti-códon e consiste em três nucleotídeos que podem estabelecer um pareamento de bases com o códon complementar do mRNA. A tradução da mensagem numa proteína ocorre nos ribossomos, que asseguram a interação ordenada de todos os componentes envolvidos na síntese protéica.
Por volta de 1964 todos os 64 códons possíveis haviam sido decifrados. 61 códons correspondem a aminoácidos e 3 representam sinais para a terminação das cadeias polipeptídicas. Sabendo que existem somente 20 aminoácidos, fica evidente que vários trios podem codificar para o mesmo aminoácido; isto é, alguns dos trios são sinônimos. A prolina, por exemplo, é codificada por CCU, CCA, CCG e CCC. Note que na maioria dos casos os códons que são sinônimos diferem somente na base que ocupa a terceira posição no trio e que as duas primeiras bases são mais inflexíveis na codificação. Em consequência, as mutações que atingem a terceira base frequentemente passam
desapercebidas (mutações silenciosas) pois elas podem não alterar a composição de aminoácidos da proteína. O sinal de iniciação para a síntese protéica é o códon AUG. O sinal de terminação é fornecido pelos códons UAG, UAA, UGA. Quando o ribossomo atinge o códon de terminação, a cadeia polipeptídica completa é liberada.
Sequências Intercaladas nos Genes Eucarióticos
Inesperadamente, observou-se que nos eucariontes a informação para mRNAs covalentemente contíguos está frequentemente localizada em segmentos de DNA não contíguos. Em outras palavras, os genes são interrompidos por inserções de DNA não codificador. Estas sequências de DNA inseridas, que não são encontradas no mRNA maduro, são denominadas sequências intercaladas ou íntrons. Foram encontrados íntrons em genes da globina, albumina de ovo, imunoglobina, tRNA e muitos outros genes. Nem todos os genes eucarióticos são interrompidos; aqueles que codificam para as histonas e alguns tRNAs, por exemplo, são contínuos. As partes da sequência de DNA que produzem proteína são chamadas de éxons. Mutação Outro conceito importante da biologia é o de mutação, que é uma mudança no conteúdo do DNA. Os tipos de mudanças podem ser de substituição de base, inserção de base, remoção de base, e rearranjo ou troca na ordem de segmentos de base. Estas mudanças podem ser divididas em classes dependendo da escala com que elas ocorrem. Algumas mudanças são fenômenos localizados, enquanto outras ocorrem um milhão de vezes seguidas.
Genoma
O genoma é o conteúdo de todo DNA presente em uma célula, incluindo todos os genes e todas as regiões intergênicas.
Nenhum comentário:
Postar um comentário